RNASEQR—a streamlined and accurate RNA-seq sequence analysis program
نویسندگان
چکیده
Next-generation sequencing (NGS) technologies-based transcriptomic profiling method often called RNA-seq has been widely used to study global gene expression, alternative exon usage, new exon discovery, novel transcriptional isoforms and genomic sequence variations. However, this technique also poses many biological and informatics challenges to extracting meaningful biological information. The RNA-seq data analysis is built on the foundation of high quality initial genome localization and alignment information for RNA-seq sequences. Toward this goal, we have developed RNASEQR to accurately and effectively map millions of RNA-seq sequences. We have systematically compared RNASEQR with four of the most widely used tools using a simulated data set created from the Consensus CDS project and two experimental RNA-seq data sets generated from a human glioblastoma patient. Our results showed that RNASEQR yields more accurate estimates for gene expression, complete gene structures and new transcript isoforms, as well as more accurate detection of single nucleotide variants (SNVs). RNASEQR analyzes raw data from RNA-seq experiments effectively and outputs results in a manner that is compatible with a wide variety of specialized downstream analyses on desktop computers.
منابع مشابه
BrAD-seq: Breath Adapter Directional sequencing: a streamlined, ultra-simple and fast library preparation protocol for strand specific mRNA library construction
Next Generation Sequencing (NGS) is driving rapid advancement in biological understanding and RNA-sequencing (RNA-seq) has become an indispensable tool for biology and medicine. There is a growing need for access to these technologies although preparation of NGS libraries remains a bottleneck to wider adoption. Here we report a novel method for the production of strand specific RNA-seq librarie...
متن کاملSUPPA2: fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions
Despite the many approaches to study differential splicing from RNA-seq, many challenges remain unsolved, including computing capacity and sequencing depth requirements. Here we present SUPPA2, a new method that addresses these challenges, and enables streamlined analysis across multiple conditions taking into account biological variability. Using experimental and simulated data, we show that S...
متن کاملAtRTD – a comprehensive reference transcript dataset resource for accurate quantification of transcript‐specific expression in Arabidopsis thaliana
RNA-sequencing (RNA-seq) allows global gene expression analysis at the individual transcript level. Accurate quantification of transcript variants generated by alternative splicing (AS) remains a challenge. We have developed a comprehensive, nonredundant Arabidopsis reference transcript dataset (AtRTD) containing over 74 000 transcripts for use with algorithms to quantify AS transcript isoforms...
متن کاملRna-sequencing Analysis: Read Alignment and Discovery and Reconstruction of fusion transcripts
Title of Document: RNA-SEQUENCING ANALYSIS: READ ALIGNMENT AND DISCOVERY AND RECONSTRUCTION OF FUSION TRANSCRIPTS Daehwan Kim, Doctor of Philosophy, 2013 Directed By: Professor Steven L. Salzberg, Department of Computer Science RNA-sequencing technologies, which sequence the RNA molecules being transcribed in cells, allow us to explore the process of transcription in exquisite detail. One of th...
متن کاملWorkflow for Genome-Wide Determination of Pre-mRNA Splicing Efficiency from Yeast RNA-seq Data
Pre-mRNA splicing represents an important regulatory layer of eukaryotic gene expression. In the simple budding yeast Saccharomyces cerevisiae, about one-third of all mRNA molecules undergo splicing, and splicing efficiency is tightly regulated, for example, during meiotic differentiation. S. cerevisiae features a streamlined, evolutionarily highly conserved splicing machinery and serves as a f...
متن کامل